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Abstract. We consider one-dimensional n-state quantum chains having as symmetry an 
Abelian group A of order n (generalised lsing chain). These Hamiltonians depend on 
2(n - 1) coupling constants. For special values of the coupling constants the symmetry of 
the quantum chains is larger than A corresponding to a (in general non-Abelian) group 
G with m elements ( m  > n). For each element of G we find explicitly a boundary condition 
which leaves the Hamiltonian translationally invariant. This problem is relevant in finite- 
size scaling studies at the critical point of a second-order phase transition. 

1. Introduction 

In this paper we consider one-dimensional n-state quantum chains which are defined 
on arbitrary Abelian groups A of finite order [l]. We want to investigate realisations 
of boundary conditions ( BC) which are compatible with translational invariance 
(toroidal BC: TBC) of Hamiltonians belonging to n-state quantum chains. Consider- 
ations of different TBC are, for example, of interest in connection with investigations 
of finite-size spectra of one-dimensional n-state quantum chains in the infinite-volume 
limit at a critical point of a second-order phase transition. The finite-size spectra of 
these chains hint at irreducible and unitary representations (irreps) of two commuting 
Virasoro algebras with the same central charge c [2-91. (The Hamiltonian of the 
quantum chain is supposed to be parity conserving.) An irrep of these Virasoro algebras 
is labelled by a scaling dimension x and a spin s of a corresponding scaling operator 
[2,9, 101. Operators of various spin s are realised by choosing appropriate TBC. 
Periodic BC in particular would enforce the appearence of only integral spins. The 
full operator content of a given model can only be extracted by choosing several 
different TBC [6]. 

We are interested in finding an explicit representation for TBC for n-state quantum 
chains. To this end it is natural to exploit the relationship of these one-dimensional 
quantum chains (via transfer matrices) to two-dimensional Lagrangian systems [ 13. 
To find TBC for two-dimensional Lagrange systems is a well known [ 111 and straightfor- 
ward matter. The determination of the explicit form of TBC for n-state quantum chains 
also becomes simple through hints from the Lagrangian system. The result of the 
calculation is that TBC are introduced on the spin configuration space of n-state quantum 
chains by a similarity transformation given by a certain representation of the global 
symmetry group of the Hamiltonian considered. It turns out that this result is valid 
for all one-dimensional quantum chains with at most nearest-neighbour interaction. 
(It is valid also for those models which have no evident two-dimensional Lagrangian 
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counterpart.) On the other hand it is useful to introduce TBC to n-state quantum chains 
in a basis-independent manner. We show that this can be done for a certain class of 
symmetries of the Hamiltonians. 

The paper is organised as follows. We briefly describe in the following section 
($  2) Lagrangians with TBC and a 7-continuum limit [ l ,  121 which results in Hamil- 
tonians coinciding with special n-state quantum chains. This way one gets in an explicit 
manner TBC for a slightly restricted class of Hamiltonians which correspond to sym- 
metries of the original Lagrangian. In 0 3 we introduce general n-state quantum chains 
(which appear here as generalisations of those Hamiltonians obtained in $ 2 )  and give 
a basis-invariant formulation of TBC as mentioned above. In $ 4 we compute the 
possible TBC of a z8 model having as symmetry group Z2 1Z21 Z2. (‘t’ denotes here the 
wreath product of groups.) We present a table of the conjugacy classes of the Z, t Z 2  lZz 
symmetry. (The finite-size spectra depend only on conjugacy classes.) Section 5 
contains our conclusions. 

The z8 model with Z8 BC has already been investigated [8]. There it was shown 
by numerical methods that the model has a second-order phase transition at a certain 
temperature. Calculations based on TBC different from 28 will be presented elsewhere. 

2. TBC for .r-continuum Hamiltonians 

Two-dimensional Lagrange systems with short-range interaction are defined in generali- 
sation to the Ising model on arbitrary finite Abelian groups A, so that the system is 
invariant under A translations. In character parametrisation the action S is [ l ]  

M, N denotes the size of the two-dimensional lattice and ‘ur’ are coupling constants. 
The parameters a and b describe an anisotropy of the couplings which will become 
relevant for the Hamiltonian limit we want to consider. A,,” and h are elements of 
the group A and ~ ‘ ( h )  labels the character functions of the non-trivial irreps of A. 

We choose periodic BC in the p direction (the p direction will become the time 
axis of the Hamilton version of the model (2.1)): 

hM+l,” := hLU.  (2.2) 

In the v direction we choose the boundary to be 

h,, ,+,:= Y(h,,l) 

where y is a symmetry of L so that 

(2.3) 

U h l  - h 2 )  = L ( Y ( h l )  - r ( h 2 ) )  (2.4) 

for arbitrary h,  , h2 E A. y is supposed to map A bijectively onto itself. 
We want to show that the Lagrangian (2.1) together with the BC (2.2) and (2.3) 

forms a translational invariant system. We introduce for this purpose an operator 
which generates translations. Let K := { k p , v l ,  kF,” E A be a configuration of spins. We 
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denote the configuration obtained by (twisted) translation of K in the p direction ( v  
direction) by T p K  ( T " K ) :  

i f p # M  
i f p = M  

( T F K ) p , . : =  

One immediately verifies that the action (2.1) with the BC (2.2) and (2.3) is invariant 
under translations. This remains true if the model is reformulated in the transfer matrix 
language in which the p direction is chosen to be the time axis. Translational invariance 
in the p direction is, in the transfer matrix formalism, expressed by the fact that the 
system is described by a single transfer matrix, while translational invariance in the v 
direction is a consequence of the fact that the transfer matrix commutes with an 
operator T Y  being the counterpart of the operator ( 2 . 6 )  which generates in the 
Lagrangian formalism translations in the v direction. As our considerations are 
completely independent from the anisotropy introduced in the action (2.1) there is no 
reason to doubt that the transfer matrix remains translationally invariant even in the 
extreme anisotropic limit ( 7 continuum limit) which defines special n-state quantum 
chains. It should therefore be possible to recognise the general form of TBC, at least 
for the n-state quantum chains corresponding to the transfer matrices which we consider 
here. 

To define the transfer matrix in the 7-continuum limit we have to consider the 
partition function Z corresponding to the action (2.1) 

Z =  exp{-S} 
config 

( 2 . 7 )  

in the limit b + CO and a + 0 where the limit is taken so that A = a exp{ b k , }  remains 
at a fixed value. Here k, denotes the minimum of L ( h )  over A and 0 denotes the 
subset of A where L ( h )  = k,. Since it is well known how to perform this 7 continuum 
limit (see, e.g., [ l ,  12]), we restrict ourselves to summarising the results. (For details 
see [ 11.) We get the following Hamiltonian H y  : 

where 

u h , = 1 0 . * . 0 1  @ a h @  1 0  ... 01 
7 

vth position 

r:= io.. . o i  I O . .  .01 

r ; ( y ) = r y Y ) O i O . .  . o i  
uth position 

and ah, r' and Y ( y )  are operators defined on the n-dimensional ( n  is the order 
of the finite Abelian group A) space of functions defined on A with range in the 
complex numbers C. A natural base in this space is given by B =  
{ e ,  : A  + C I e,( h )  = S(g - h)g ,  h E A}. The effect of the operators ah, r' and r'( y )  on 
the base B is 

(2.9) 
h 

U eg = T'e, = x ' ( g ) e ,  g ,  h E A ;  e,€ B 
where $ ( g )  label the characters of the irreps of A. 
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(2.10) 

(2.11) 

where U ( ? )  is nothing but a permutation of the base B. 

becomes, in the transfer matrix language, 
The translation operator T u  (2.5) in the v direction belonging to the BC (2.3) 

TY' U1(y)T. (2.12) 

T is the translation operator of periodic BC and explicitly given by 

T (  egl 0. . .O egN ) = egN 0 egl 0. . .O egN-l (2.13) 

and U,(?) is defined by 
U,(?)= U ( y ) O l O . .  . 0 1 .  (2.14) 

One easily verifies that TY and H, in fact commute with each other. One has to 
use for this purpose the identities 

(2.15) 
N 

fib) = 0 U ( ? )  
J = l  

which are consequences of the fact that y is a symmetry of the Lagrangian L. 
Equations (2.10)-(2.12) together with (2.15) solve the problem of TBC for the 

Hamiltonians given by (2.8). More general Hamiltonians will be considered in the 
following section. 

3. General n-state quantum chains 

Using the same notation as in 0 2 we define general n-state quantum chains in agreement 
with [l] by 

N ( bh(+:+A a J ' ~ r ~ , ) ~  
H = - C  

j = 1  heA\(OI r + O  
(3.1) 

The generalisation in comparison with (2.8) consists in the introduction of arbitrary 
coupling constants {bh}  for the one-site terms. We start with periodic BC: 

r;+, = r; (3.2) 

which obviously belong to TBC. The symmetry of the Lagrangian system played, as 
we saw in $2 ,  a crucial role for the definition of TBC. We investigate therefore the 
invariance group of the system (3.1). 

The system is, by construction, invariant under A translations: 

fi( h ) a )  fi( h )  = uj fit(h)r,Tsl f i ( h )  = rJrJil 
N 

f i ( h ) = @  U(h) 

U(h)e, = e g + h  Ut(h)eg = 

j = 1  

g, h E A; eg E B. 

(3.3) 
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It might happen that the symmetry of the Hamiltonian is greater than the group A. 
In order to determine further symmetries of the Hamiltonian (3.1) we consider two 
particular Lagrange systems (3.4) [ l]  living on the same Abelian group A as the 
Hamiltonian chain. These Lagrange systems are given finally by the coupling constants 
{a,},,, and {bh}heA defining the quantum chain (3.1). The Lagrange densities Lo, Lc 
of these Lagrangian systems are 

(3.4) 

where Lo is given in the so-called orbit parametrisation and obviously corresponds to 
that part of the Hamiltonian (3 .1)  which does not depend on A, while Lc is given in 
the character representation and corresponds to the term of the Hamiltonian (3.1) 
which is linear in A. We consider these Lagrange systems since there is a relationship 
between their invariance groups and the invariance group of the Hamiltonian chain 
(3.1).  This relationship is established by a mapping which associates with each 
permutation y acting on the group A an orthogonal transformation U (  y )  defined on 
the n-dimensional spin space of the Hamiltonian chain (3.1).  If y is any permutation 
of the group elements of A we define U ( y )  by 

U(Ykg = e?(g)* (3.5) 
If we choose y to be an element of the symmetry group Go (G,) of the Lagrangian 
Lo ( Lc) ,  fi( y )  U (  y )  commutes with the part of the Hamiltonian to which the 
Lagrangian Lo ( L , )  is related. A symmetry of the entire Hamiltonian has to commute 
with both parts of the Hamiltonian. This will automatically be the case if we choose 
the symmetry y to be in the intersection Goc of the symmetry groups Go, G,. So we 
have 

One easily recognises in (3.6) the generalisations of the equation (2.15). We conclude 
that we can write TBC for each element of Goc belonging to the invariance group of 
H, simply by using the expressions (2.10)-(2.12) for y E Go,. 

(3 .7)  

The form of these TBC has the drawback that they are defined in respect to a special 
base, and they are rather remote from other more familiar TBC. Therefore our next 
aim is to show that both objections can be removed for those symmetries of the 
Hamiltonian chain which belong to Go,. We will show that TBC can be given for 
these symmetries in the common basis invariant form as linear combinations of the 
operators r; [3,7]: 

(3 .8)  

One has to use the following orthogonality relations to this end, valid for Abelian and 
finite groups A of order n [13]: 

(3.9) 

(3.10) 
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where x'( h )  are the characters of the irreps of A, as defined before. These relations 
yield: 

We may rewrite (3.11) as 

U+( y)r'u( ?) = w'( y ) r  I' 

r ' # O  

where 

1 IFr'( y )  = - x'( y (  h))Xr'*(  h ) .  
n h c A  

(3.11) 

(3.12) 

(3.13) 

Equation (3.13) may be regarded as the main result of this paper. We have managed 
to make contact to the more familiar basis-invariant form of the TBC. It can be shown 
in general with help of the orthogonality relations (3.9) and (3.10) that the set of 
matrices D ( y ) ,  with y being a symmetry element of the n-state quantum chain form 
a unitary, not necessary irreducible, but faithful representation of the invariance group 
of H. This property of the boundary conditions was previously observed in special 
cases, e.g. in the four-state Potts model [7] or in the X X Z  model [14]. This latter 
model is not contained in the system we considered. 

4. An application 

The model which we want to consider here is given by equation (3.1) specialised to 
the group Z8. We demand in addition that the coupling constants satisfy certain 
relations: 

a,  = 6, 

a, = a4 = a6 (4.1) 

a ,  = a 3 =  a 5 =  a, .  

This Hermitian model has been investigated in [8] where it was stated that it is 
conformally invariant for the temperature A taking the value one. The Virasoro charge 
c was found to be 1.3 . . . [81. 

The symmetry of this model is determined by the Lagrangian Lc as introduced in 
5 3. This can be seen by rewriting this Lagrangian in orbit parametrisation. The 
comparison of the two Lagrange densities Lc and Lo leads to the conclusion that the 
orbits of the Lagrangian Lc are contained in the orbits of Lo so that each symmetry 
of Lc is also a symmetry of Lo. This confirms our statement. The symmetry group 
is Z 2 1 Z 2 1 Z 2 ,  where '1' denotes the wreath product of groups [ l ,  151. The group is 
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generated by the following four permutations acting on the group 28 

(4.2) 

g, generates z8 translations and g2 charge conjugation and both generate the dihedral 
group D8 for which TBC are known. Each element g of Z2 1Z21 Z2 can be represented 
by 

I, m, n, o integers. (4.3) l m n o  g = g1g2 g3g4 

The order of this group is 128. A careful investigation of the group Z2 1Z2 1Z2 shows, 
that it contains two Z20Z20Z2 acting transitively on Z 8 .  From the existence of such 
a subgroup (Z20Z20Z2) of the invariance group of the Hamiltonian follows that this 
Z8 model is isomorphic to a model defined on the Abelian group Z20Z20Z2 [16]. 
This isomorphism may be realised, for example, by the following map: 

Z8 Z,OZ,O z2 

0 -  000 

1 -  100 

2 -  00 1 

3 -  010 (4.4) 

4 -  1 1 1  

5 -  01 I 

6 -  110 

7 -  101. 

The classification of models defined on Z 2 0 Z 2 0 Z 2  has already been done in [l]. A 
comparison with the table given in [ l ]  yields the Z21Z21Z2 invariance of the model. 

The 20 conjugacy classes of Z21Z21Z2 are given in table 1.  From (4.3) and the 
homomorphism property of the representation D of the invariance group Z2 1 Z 2  1 Z2 
stated in 0 3 one infers that the 128 TBC may be represented in terms of four basic 
matrices: 

D(g) = m d g w g : )  = O(gl)'o(g2)"o(g3)"D(g,)". (4.5) 

As the spectrum of the Hamiltonian system (3 .1 )  only depends on the conjugacy class 
which the group element determining the TBC of the quantum chain belongs to, one 
has to consider only one arbitrary TBC for each conjugacy class. Consequently only 
20 TBC are relevant for computations. Suitable representatives of the conjugacy classes 
may be selected out of table 1 .  Using that the characters of z8 are given by 

1 + i  
w = exp { i $1 - - - 4 r, h E ( 0 , .  . . , 7 }  (4.6) , y r ( h ) = w r h  
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Table 1. Conjugacy classes of Z, Z2 Z, 

Conjugacy class 
Order of Number of 
elements elements 

8 

4 

4 

4 

2 

4 

16 

16 

8 

16 

8 

4 

one yields the following matrices: 

w o o o o o o  
w 2 0  0 0 0 0 

0 0 0 0 o w 6  
0 0 0 0 0 o w 7  
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0 0 0 0 0 0 1  
0 0 0 0 0 1 0  
0 0 0 0 1 0 0  

o o f (1- i )  o o o 

‘ f ( l + i ) o  o o f ( l - i ) o  o 
0 0 0 0 0 1 0  

0 0 0 1 0 0 0  
$(I- i )  o O o t ( l+ i )  O O 

0 1 0 0 0 0 0  
\ o o f ( l + i )  o o o 

f 0 -1. 21 0 L o fi  
0 1 0 0 0 0 0  

o -fi o 

2 (4.7) 

One recognises the common TBC generated by D(g,) ,  D(g,) corresponding to D8 [2,3]. 

5. Conclusion 

We presented a detailed investigation of TBC for n-state quantum chains defined on 
finite groups. Starting from the classical two-dimensional Lagrange formalism in 9 2, 
we discussed the introduction of TBC by performing an anisotropic continuum time 
limit. We derived expressions for TBC and their corresponding translation operator in 
the Hamiltonian picture. These expressions could easily be represented by permuta- 
tions U (  y )  of the base B = {e, I e,(h) = S ( g  - h)g, h E A} of the n-dimensional spin 
space belonging to the Abelian group A where the Hamiltonian H is defined on: 

G + 1 =  m Y ) r ; U l ( Y )  T Y  = U l ( y ) T  (5.1) 

where T is the translation operator of periodic BC. U,(?)  acts on the first site of the 
lattice through U ( y ) .  y is a symmetry of the original Lagrange system. The result 
was extended to more general Hamiltonians in § 3. Equation (5.1) is valid even for 
the general n-state quantum chain as defined in § 3 (3.1). 

Although the TBC (5.1) are rather natural, because they can be interpreted geometri- 
cally as having closed the chain up to a rotation in the spin space, (5.1) seems not to 
coincide with convenient TBC. We discussed this problem in 9 3 and derived a basis- 
invariant formulation of (5.1) for symmetries of n-state quantum chains which are 
associated with permutations U (  y )  of the base B. This formulation agreed, for special 
symmetries U(D,), with the known TBC of Z, models with D, symmetry. The 
possibility to define TBC basis-independent reflects the fact that (5.1) can be written 
as a linear combination of the matrices r;. So we have the following explicit formula 
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for TBC: 

where D ( y )  is given here by 

( 5 . 2 )  

(5.3) 

where x ' ( g )  are the n characters belonging to the irreps of the Abelian group A of 
order n. The fact that the TBC (5.1) can be given basis invariant by (5.2) is a consequence 
of the relationship of the considered symmetry group of the Hamiltonian to that of 
Lagrangian systems. 

The formula (5.3) represents the main result of this paper. It reflects in a simple 
and basis-invariant form the connection between the global symmetries of the Hamil- 
tonian and possible TBC. 

In § 4 we gave an application to a Z8 model with Z21Z21Z2 symmetry. 

Acknowledgments 

I would like to thank V Rittenberg for suggesting this problem and M Baake, R Flume, 
U Grimm and M Schlottmann for valuable discussions. 

References 

Marcu M, Regev A and Rittenberg V 1981 J. Marh. Phys. 22 2740 
Marcu M and Rittenberg V 1981 J. Marh. Phys. 22 2753 
von Gehlen G, Rittenberg V and Ruegg H 1985 1. Phys. A: Math. Gen. 19 107 
von Gehlen G, Rittenberg V and Schiitz G 1988 1. Phys. A: Marh. Gen. 21 2805 
Baake M, von Gehlen G and Rittenberg V 1987 J. Phys. A: Marh. Gen. 20 L479 L487 
Cardy J L 1987 Phase Transitions and Critical Phenomena vol 1 1  ed C Domb and J L Lebowitz (New 

Cardy J L 1986 Nucl. Phys. B 270 186, B 275 200 
Grimm U 1988 J. Phys. A :  Math. Gen. 21 3013 
von Gehlen G and Rittenberg V 1986 J.  Phys. A :  Math. Gen. 19 2439; 1987 J. Phys. A :  Math. Gen. 20 

Goddard P and Olive D 1986 Znt. J. Mod. Phys. A 1 303 
Blote H W, Cardy J L and Nightingale M P 1986 Phys. Rev. Lerr. 56 742 
Fradkin E and Kadanoff L P 1980 Nucl. Phys. B 170 1 
Kogut J B 1979 Reo. Mod. Phys. 51 659 
Miller W 1972 Symmetry Groups and their Applications (New York: Academic) 
Alcaraz F C, Baake M, Grimm U and Rittenberg V 1988 J. Phys. A:  Marh. Gen. 21 L117 
Hall M 1959 The Theory of Groups (New York: MacMillan) 
Marcu M 1981 PhD Thesis Bonn-IR-81-20 

York: Academic) p 55 

1309 


